Your browser doesn't support javascript.
loading
Modeling circuit mechanisms of opposing cortical responses to visual flow perturbations.
Galván Fraile, J; Scherr, Franz; Ramasco, José J; Arkhipov, Anton; Maass, Wolfgang; Mirasso, Claudio R.
Afiliación
  • Galván Fraile J; Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain.
  • Scherr F; Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.
  • Ramasco JJ; Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain.
  • Arkhipov A; Allen Institute, Seattle, Washington, United States of America.
  • Maass W; Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.
  • Mirasso CR; Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain.
PLoS Comput Biol ; 20(3): e1011921, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38452057
ABSTRACT
In an ever-changing visual world, animals' survival depends on their ability to perceive and respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of this sensory processing, orchestrating neural responses to perturbations in visual flow. However, the underlying neural mechanisms that lead to distinct cortical responses to such perturbations remain enigmatic. In this study, our objective was to uncover the neural dynamics that govern V1 neurons' responses to visual flow perturbations using a biologically realistic computational model. By subjecting the model to sudden changes in visual input, we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely, depolarizing and hyperpolarizing responses. We found that this segregation was primarily driven by the competition between external visual input and recurrent inhibition, particularly within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a more prominent role for inhibitory mechanisms in the visual processing of the upper cortical layers. Our findings share similarities with recent experimental studies focusing on the opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex during visual flow perturbations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Visual Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Visual Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: España