Your browser doesn't support javascript.
loading
MdPRX34L, a class III peroxidase gene, activates the immune response in apple to the fungal pathogen Botryosphaeria dothidea.
Zhao, Yu-Wen; Li, Wan-Kun; Wang, Chu-Kun; Sun, Quan; Wang, Wen-Yan; Huang, Xiao-Yu; Xiang, Ying; Hu, Da-Gang.
Afiliación
  • Zhao YW; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Li WK; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Wang CK; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Sun Q; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Wang WY; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Huang XY; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Xiang Y; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
  • Hu DG; National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China. hudagang@sdau.edu.cn.
Planta ; 259(4): 86, 2024 Mar 07.
Article en En | MEDLINE | ID: mdl-38453695
ABSTRACT
MAIN

CONCLUSION:

MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ascomicetos / Malus Idioma: En Revista: Planta Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ascomicetos / Malus Idioma: En Revista: Planta Año: 2024 Tipo del documento: Article País de afiliación: China
...