Your browser doesn't support javascript.
loading
Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures.
Myrtollari, Kamela; Calderini, Elia; Kracher, Daniel; Schöngaßner, Tobias; Galusic, Stela; Slavica, Anita; Taden, Andreas; Mokos, Daniel; Schrüfer, Anna; Wirnsberger, Gregor; Gruber, Karl; Daniel, Bastian; Kourist, Robert.
Afiliación
  • Myrtollari K; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
  • Calderini E; Austrian Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria.
  • Kracher D; Adhesive Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany.
  • Schöngaßner T; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
  • Galusic S; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
  • Slavica A; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
  • Taden A; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
  • Mokos D; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
  • Schrüfer A; Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia.
  • Wirnsberger G; Adhesive Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany.
  • Gruber K; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/3, 8010 Graz, Austria.
  • Daniel B; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/3, 8010 Graz, Austria.
  • Kourist R; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/3, 8010 Graz, Austria.
ACS Sustain Chem Eng ; 12(9): 3575-3584, 2024 Mar 04.
Article en En | MEDLINE | ID: mdl-38456190
ABSTRACT
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Sustain Chem Eng Año: 2024 Tipo del documento: Article País de afiliación: Austria Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Sustain Chem Eng Año: 2024 Tipo del documento: Article País de afiliación: Austria Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA