Your browser doesn't support javascript.
loading
A Enhanced Fluorescent Probe for Simultaneous Detection and Discrimination of Hydrogen Bisulfite Anions and Glutathione.
Xie, Yu; Lv, Xiaoci; Li, Zhiwei; Li, Yanbo; Li, Heping.
Afiliación
  • Xie Y; School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
  • Lv X; School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
  • Li Z; School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
  • Li Y; School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
  • Li H; School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China. lihepinghn@126.com.
J Fluoresc ; 2024 Mar 08.
Article en En | MEDLINE | ID: mdl-38457075
ABSTRACT
Bisulfite (HSO3-) and biological thiols molecules, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), play important roles in organisms. Developing a fluorescent probe that can simultaneously detect and distinguish HSO3- and biological thiols is of great significance. In this study, ethyl(2E,4Z)-5-chloro-2-cyano-5-(7-(diethylamino)-2-oxo-2 H-chromen-3-yl)penta-2,4-dienoate (CCO) as a novel enhanced fluorescence probe was synthesized by integrating coumarin derivatives and ethyl cyanoacetate, which can simultaneous detection and discrimination of hydrogen bisulfite anions and glutathione. The sensing mechanism was elucidated through spectral analysis and some control experiments. In weakly alkaline environments, the probe not only has good selectivity for HSO3- and GSH, but also has a lower detection limits of 0.0179 µM and 0.2034 µM. The probe exhibited fuorescent turn-on for distinguishing with 296 and 28 fold the fluorescent intensity increase at 486 and 505 nm, respectively, through diferent excitation wavelengths. This provides a new method for simultaneous detection and discrimination of HSO3- and biological thiol cell levels and further applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Fluoresc Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Fluoresc Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: China
...