Your browser doesn't support javascript.
loading
Engineering 2D Material Exciton Line Shape with Graphene/h-BN Encapsulation.
Woo, Steffi Y; Shao, Fuhui; Arora, Ashish; Schneider, Robert; Wu, Nianjheng; Mayne, Andrew J; Ho, Ching-Hwa; Och, Mauro; Mattevi, Cecilia; Reserbat-Plantey, Antoine; Moreno, Álvaro; Sheinfux, Hanan Herzig; Watanabe, Kenji; Taniguchi, Takashi; Michaelis de Vasconcellos, Steffen; Koppens, Frank H L; Niu, Zhichuan; Stéphan, Odile; Kociak, Mathieu; García de Abajo, F Javier; Bratschitsch, Rudolf; Konecná, Andrea; Tizei, Luiz H G.
Afiliación
  • Woo SY; Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
  • Shao F; Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
  • Arora A; State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
  • Schneider R; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China.
  • Wu N; Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany.
  • Mayne AJ; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, 411008 Pune, India.
  • Ho CH; Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany.
  • Och M; Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
  • Mattevi C; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
  • Reserbat-Plantey A; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
  • Moreno Á; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
  • Sheinfux HH; Department of Materials, Imperial College London, London SW7 2AZ, U.K.
  • Watanabe K; Department of Materials, Imperial College London, London SW7 2AZ, U.K.
  • Taniguchi T; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain.
  • Michaelis de Vasconcellos S; Université Côte d'Azur, CNRS, CRHEA, 06560 Valbonne, Sophia-Antipolis, France.
  • Koppens FHL; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain.
  • Niu Z; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain.
  • Stéphan O; Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel.
  • Kociak M; Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
  • García de Abajo FJ; Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
  • Bratschitsch R; Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany.
  • Konecná A; ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain.
  • Tizei LHG; ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Article en En | MEDLINE | ID: mdl-38471109
ABSTRACT
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett / Nano lett / Nano letters Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett / Nano lett / Nano letters Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos