Your browser doesn't support javascript.
loading
Higher order gaps in the renormalized band structure of doubly aligned hBN/bilayer graphene moiré superlattice.
Jat, Mohit Kumar; Tiwari, Priya; Bajaj, Robin; Shitut, Ishita; Mandal, Shinjan; Watanabe, Kenji; Taniguchi, Takashi; Krishnamurthy, H R; Jain, Manish; Bid, Aveek.
Afiliación
  • Jat MK; Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
  • Tiwari P; Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
  • Bajaj R; Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
  • Shitut I; Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
  • Mandal S; Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
  • Watanabe K; Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Taniguchi T; Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Krishnamurthy HR; Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
  • Jain M; Department of Physics, Indian Institute of Science, Bangalore, 560012, India. mjain@iisc.ac.in.
  • Bid A; Department of Physics, Indian Institute of Science, Bangalore, 560012, India. aveek@iisc.ac.in.
Nat Commun ; 15(1): 2335, 2024 Mar 14.
Article en En | MEDLINE | ID: mdl-38485946
ABSTRACT
This paper presents our findings on the recursive band gap engineering of chiral fermions in bilayer graphene doubly aligned with hBN. Using two interfering moiré potentials, we generate a supermoiré pattern that renormalizes the electronic bands of the pristine bilayer graphene, resulting in higher order fractal gaps even at very low energies. These Bragg gaps can be mapped using a unique linear combination of periodic areas within the system. To validate our findings, we use electronic transport measurements to identify the position of these gaps as a function of the carrier density. We establish their agreement with the predicted carrier densities and corresponding quantum numbers obtained using the continuum model. Our study provides strong evidence of the quantization of the momentum-space area of quasi-Brillouin zones in a minimally incommensurate lattice. It fills important gaps in the understanding of band structure engineering of Dirac fermions with a doubly periodic superlattice spinor potential.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: India