Your browser doesn't support javascript.
loading
Channel-wise attention enhanced and structural similarity constrained cycleGAN for effective synthetic CT generation from head and neck MRI images.
Gong, Changfei; Huang, Yuling; Luo, Mingming; Cao, Shunxiang; Gong, Xiaochang; Ding, Shenggou; Yuan, Xingxing; Zheng, Wenheng; Zhang, Yun.
Afiliación
  • Gong C; Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
  • Huang Y; The Second Affiliated Hospital of Nanchang Medical College, 330029, Nanchang, Jiangxi, PR China.
  • Luo M; Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
  • Cao S; The Second Affiliated Hospital of Nanchang Medical College, 330029, Nanchang, Jiangxi, PR China.
  • Gong X; Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
  • Ding S; The Second Affiliated Hospital of Nanchang Medical College, 330029, Nanchang, Jiangxi, PR China.
  • Yuan X; Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
  • Zheng W; The Second Affiliated Hospital of Nanchang Medical College, 330029, Nanchang, Jiangxi, PR China.
  • Zhang Y; Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
Radiat Oncol ; 19(1): 37, 2024 Mar 14.
Article en En | MEDLINE | ID: mdl-38486193
ABSTRACT

BACKGROUND:

Magnetic resonance imaging (MRI) plays an increasingly important role in radiotherapy, enhancing the accuracy of target and organs at risk delineation, but the absence of electron density information limits its further clinical application. Therefore, the aim of this study is to develop and evaluate a novel unsupervised network (cycleSimulationGAN) for unpaired MR-to-CT synthesis.

METHODS:

The proposed cycleSimulationGAN in this work integrates contour consistency loss function and channel-wise attention mechanism to synthesize high-quality CT-like images. Specially, the proposed cycleSimulationGAN constrains the structural similarity between the synthetic and input images for better structural retention characteristics. Additionally, we propose to equip a novel channel-wise attention mechanism based on the traditional generator of GAN to enhance the feature representation capability of deep network and extract more effective features. The mean absolute error (MAE) of Hounsfield Units (HU), peak signal-to-noise ratio (PSNR), root-mean-square error (RMSE) and structural similarity index (SSIM) were calculated between synthetic CT (sCT) and ground truth (GT) CT images to quantify the overall sCT performance.

RESULTS:

One hundred and sixty nasopharyngeal carcinoma (NPC) patients who underwent volumetric-modulated arc radiotherapy (VMAT) were enrolled in this study. The generated sCT of our method were more consistent with the GT compared with other methods in terms of visual inspection. The average MAE, RMSE, PSNR, and SSIM calculated over twenty patients were 61.88 ± 1.42, 116.85 ± 3.42, 36.23 ± 0.52 and 0.985 ± 0.002 for the proposed method. The four image quality assessment metrics were significantly improved by our approach compared to conventional cycleGAN, the proposed cycleSimulationGAN produces significantly better synthetic results except for SSIM in bone.

CONCLUSIONS:

We developed a novel cycleSimulationGAN model that can effectively create sCT images, making them comparable to GT images, which could potentially benefit the MRI-based treatment planning.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Nasofaríngeas / Cuello Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Nasofaríngeas / Cuello Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido