Your browser doesn't support javascript.
loading
Porous Ceramic Metal-Based Flow Battery Composite Membrane.
Huang, Kang; Mu, Feiyan; Hou, Xiaoxuan; Cao, Hongyan; Liu, Xin; Chen, Ting; Xia, Yu; Xu, Zhi.
Afiliación
  • Huang K; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
  • Mu F; Suzhou Laboratory, Suzhou, 215125, China.
  • Hou X; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
  • Cao H; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
  • Liu X; Suzhou Laboratory, Suzhou, 215125, China.
  • Chen T; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
  • Xia Y; Suzhou Laboratory, Suzhou, 215125, China.
  • Xu Z; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
Angew Chem Int Ed Engl ; 63(19): e202401558, 2024 May 06.
Article en En | MEDLINE | ID: mdl-38489014
ABSTRACT
In metal-based flow battery, membranes significantly impact energy conversion efficiency and security. Unfortunately, damages to the membrane occur due to gradual accumulation of metal dendrites, causing short circuits and shortening cycle life. Herein, we developed a rigid hierarchical porous ceramic flow battery composite membrane with a sub-10-nm-thick polyelectrolyte coating to achieve high ion selectivity and conductivity, to restrain dendrite, and to realize long cycle life and high areal capacity. An aqueous zinc-iron flow battery prepared using this membrane achieved an outstanding energy efficiency of >80%, exhibiting excellent long-term stability (over 1000 h) and extremely high areal capacity (260 mAh cm-2). Low-field nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering, in situ infrared spectroscopy, solid-state NMR analysis, and nano-computed tomography revealed that the rigid hierarchical pore structures and numerous hydrogen bonding networks in the membrane contributed to the stable operation and superior battery performance. This study contributes to the development of next-generation metal-based flow battery membranes for energy and power generation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania