Your browser doesn't support javascript.
loading
Lanthanide transport in angstrom-scale MoS2-based two-dimensional channels.
Wang, Mingzhan; Xiong, Qinsi; Wang, Maoyu; Lewis, Nicholas H C; Ying, Dongchen; Yan, Gangbin; Hoenig, Eli; Han, Yu; Lee, One-Sun; Peng, Guiming; Zhou, Hua; Schatz, George C; Liu, Chong.
Afiliación
  • Wang M; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Xiong Q; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
  • Wang M; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Lewis NHC; Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  • Ying D; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Yan G; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Hoenig E; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Han Y; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Lee OS; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
  • Peng G; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
  • Zhou H; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Schatz GC; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
  • Liu C; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Sci Adv ; 10(11): eadh1330, 2024 Mar 15.
Article en En | MEDLINE | ID: mdl-38489373
ABSTRACT
Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv / Sci. Adv / Science advances Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv / Sci. Adv / Science advances Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos