Your browser doesn't support javascript.
loading
Structure and assembly of a bacterial gasdermin pore.
Johnson, Alex G; Mayer, Megan L; Schaefer, Stefan L; McNamara-Bordewick, Nora K; Hummer, Gerhard; Kranzusch, Philip J.
Afiliación
  • Johnson AG; Department of Microbiology, Harvard Medical School, Boston, MA, USA. algejohnson@gmail.com.
  • Mayer ML; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA. algejohnson@gmail.com.
  • Schaefer SL; Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA, USA.
  • McNamara-Bordewick NK; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
  • Hummer G; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Kranzusch PJ; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Nature ; 628(8008): 657-663, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38509367
ABSTRACT
In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Myxococcales / Gasderminas Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Myxococcales / Gasderminas Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido