Your browser doesn't support javascript.
loading
Assessment of the properties of concrete containing artificial green geopolymer aggregates by cold bonding pelletization process.
Tawfik, Taher A; Kamal, Alaa Hussein; Faried, Ahmed Serag.
Afiliación
  • Tawfik TA; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravskácesta 9, SK-845 03, Bratislava, Slovak Republic. dr.taher.tawfik@gmail.com.
  • Kamal AH; Department of Construction and Building Engineering, High Institute of Engineering, October 6 City, Egypt. dr.taher.tawfik@gmail.com.
  • Faried AS; Faculty of Engineering, Fayoum University, Fayoum, Egypt.
Environ Sci Pollut Res Int ; 31(18): 27329-27344, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38512577
ABSTRACT
Recently, the usage of a cold-bonded method in the production of artificial green geopolymer coarse aggregates (GCA) has been crucial from an economic and environmental perspective because the sintering method consumes an enormous quantity of energy and generates a significant quantity of pollutants. This research investigated the manufacture of GCA via cold-bonded pelletization using two distinct industrial byproducts (GGBFS and FA) via a new and simpler pelletization technology. Three different binders were used to produce three distinct types of GCAs as partial replacements for natural coarse aggregate (NCA) at varying replacement rates (0%, 25%, 50%, and 75%). The first group used ground-granulated blast furnace slag, while the second used GGBFS with perlite, and the third used FA with perlite. An alkaline activator was commonly used with all three groups. The physical and mechanical properties of three distinct varieties of GCA were recorded. The results indicated that the mechanical and chemical properties of three different types of GCAs were nearly identical to those of natural aggregate, with the exception of their increased water absorption. According to the findings, the recommended mixtures were suitable for usage in the construction industry. The results indicated that the ratio of all investigated attributes declined as the number of GCAs increased. In contrast, lightweight concrete can be obtained at a ratio of GCA (FA with perlite) equal to 75%, where unit weight, compressive, splitting tensile, flexural, and water absorption strengths were 1.87 gm/cm3, 20.2 MPa, 1.8 MPa, 8 MPa, and 6.0%, respectively (FA with perlite).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales de Construcción Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales de Construcción Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article
...