Your browser doesn't support javascript.
loading
An End-to-end In-Silico and In-Vitro Drug Repurposing Pipeline for Glioblastoma.
Lin, Ko-Hong; Zhu, Jay-Jiguang; Smith, Judith A; Kim, Yejin; Jiang, Xiaoqian.
Afiliación
  • Lin KH; School of Biomedical Informatics, University of Texas Health, Science Center at Houston, Houston, TX, USA.
  • Zhu JJ; McGovern Medical School, University of Texas Health, Science Center at Houston, Houston, TX, USA.
  • Smith JA; McGovern Medical School, University of Texas Health, Science Center at Houston, Houston, TX, USA.
  • Kim Y; School of Biomedical Informatics, University of Texas Health, Science Center at Houston, Houston, TX, USA.
  • Jiang X; School of Biomedical Informatics, University of Texas Health, Science Center at Houston, Houston, TX, USA.
IEEE Int Conf Healthc Inform ; 2023: 738-745, 2023 Jun.
Article en En | MEDLINE | ID: mdl-38516034
ABSTRACT
Our study aims to address the challenges in drug development for glioblastoma, a highly aggressive brain cancer with poor prognosis. We propose a computational framework that utilizes machine learning-based propensity score matching to estimate counterfactual treatment effects and predict synergistic effects of drug combinations. Through our in-silico analysis, we identified promising drug candidates and drug combinations that warrant further investigation. To validate these computational findings, we conducted in-vitro experiments on two GBM cell lines, U87 and T98G. The experimental results demonstrated that some of the identified drugs and drug combinations indeed exhibit strong suppressive effects on GBM cell growth. Our end-to-end pipeline showcases the feasibility of integrating computational models with biological experiments to expedite drug repurposing and discovery efforts. By bridging the gap between in-silico analysis and in-vitro validation, we demonstrate the potential of this approach to accelerate the development of novel and effective treatments for glioblastoma.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Int Conf Healthc Inform Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Int Conf Healthc Inform Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos