Your browser doesn't support javascript.
loading
Seed-borne bacterial synthetic community resists seed pathogenic fungi and promotes plant growth.
Luo, De-Lin; Huang, Shi-Yi; Ma, Chen-Yu; Zhang, Xiang-Yu; Sun, Kai; Zhang, Wei; Dai, Chuan-Chao.
Afiliación
  • Luo DL; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Huang SY; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Ma CY; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Zhang XY; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Sun K; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Zhang W; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
  • Dai CC; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article en En | MEDLINE | ID: mdl-38520150
ABSTRACT

AIMS:

In this study, the control effects of synthetic microbial communities composed of peanut seed bacteria against seed aflatoxin contamination caused by Aspergillus flavus and root rot by Fusarium oxysporum were evaluated. METHODS AND

RESULTS:

Potentially conserved microbial synthetic communities (C), growth-promoting synthetic communities (S), and combined synthetic communities (CS) of peanut seeds were constructed after 16S rRNA Illumina sequencing, strain isolation, and measurement of plant growth promotion indicators. Three synthetic communities showed resistance to root rot and CS had the best effect after inoculating into peanut seedlings. This was achieved by increased defense enzyme activity and activated salicylic acid (SA)-related, systematically induced resistance in peanuts. In addition, CS also inhibited the reproduction of A. flavus on peanut seeds and the production of aflatoxin. These effects are related to bacterial degradation of toxins and destruction of mycelia.

CONCLUSIONS:

Inoculation with a synthetic community composed of seed bacteria can help host peanuts resist the invasion of seeds by A. flavus and seedlings by F. oxysporum and promote the growth of peanut seedlings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semillas / Aflatoxinas Idioma: En Revista: J Appl Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semillas / Aflatoxinas Idioma: En Revista: J Appl Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido