Your browser doesn't support javascript.
loading
Responses of attached bacterial communities to blooms of the swimming shelled pteropod Creseis acicula in Daya Bay, southern China.
Shi, Rongjun; Han, Tingting; Qi, Zhanhui; Huang, Honghui.
Afiliación
  • Shi R; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
  • Han T; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
  • Qi Z; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
  • Huang H; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article en En | MEDLINE | ID: mdl-38521983
ABSTRACT
The shelled pteropod Creseis acicula is a marine pelagic shellfish widely distributed from temperate to tropical seas around the world. From June to July 2020, a C. acicula bloom first happened in the Daya Bay, southern China, and its density reached the highest value (5600 ind. m-3) ever recorded around the world. However, few studies have investigated the responses of bacterial communities to the C. acicula bloom. In the present study, we examined the community profiles of three communities of bacteria including the free-living and particle-attached bacteria in the blooming and reference waters, and bacteria attached to the whole body and shell of C. acicula using a high-throughput sequencing method. The results indicated that the C. acicula bloom had a greater impact on particle-attached bacteria than free-living bacteria. Among the bloom-sensitive particle-attached bacteria, the predominant bacterial phyla were Pseudomonadota, Bacteroidota and Verrucomicrobiota in the blooming areas, whereas they were Actinomycetota and Planctomycetota in the reference areas. Specifically, fecal bacteria Haloferula and Halioglobus spp. were significantly enriched in the blooming waters and accumulated on C. acicula shells. Conversely, the significantly lower relative abundance of Nocardioides sp. in the blooming area and accumulated on the whole body of C. acicula indicated their attachment to particles consumed by C. acicula. Overall, our results suggested that the C. acicula bloom influenced marine bacteria, particularly particle-attached bacteria, by increasing (e.g. providing shells and feces) or decreasing (e.g. filter-feeding the suspended particles) the abundance of available substances.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Bahías Límite: Animals País/Región como asunto: Asia Idioma: En Revista: FEMS Microbiol Ecol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Bahías Límite: Animals País/Región como asunto: Asia Idioma: En Revista: FEMS Microbiol Ecol Año: 2024 Tipo del documento: Article País de afiliación: China