Your browser doesn't support javascript.
loading
Glucuronidation dynamics of curcumin and tetrahydrocurcumin for differential structures and chemical reactivities in human liver microsome and uridine diphosphate glucuronosyltransferase 2B7.
Guo, Yanlei; Long, Chengyan; Ni, Jimin; Zeng, Jin; Wang, Jianbo; Dai, Ying; Zhao, Junning.
Afiliación
  • Guo Y; West China School of Pharmacy, Sichuan University, 610041 Chengdu, China; Chongqing Academy of Chinese Materia Medica, 400065 Chongqing, China. Electronic address: guoyanlei1210@cqacmm.com.
  • Long C; Chongqing Academy of Chinese Materia Medica, 400065 Chongqing, China.
  • Ni J; Chongqing Academy of Chinese Materia Medica, 400065 Chongqing, China.
  • Zeng J; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine/ Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Scie
  • Wang J; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine/ Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Scie
  • Dai Y; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine/ Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Scie
  • Zhao J; West China School of Pharmacy, Sichuan University, 610041 Chengdu, China; National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, National Medical Products Administration of China, 100037 Beijing, China; Key Laboratory of Biological Evaluation of Traditiona
Food Chem ; 448: 138929, 2024 Aug 01.
Article en En | MEDLINE | ID: mdl-38522299
ABSTRACT
THC is the main metabolite of curcumin with better bioactivity. This study aimed to explore the factors that cause differences in the bioactivity of curcumin and THC. We analyzed the metabolic activities of curcumin and THC and the factors responsible for the differences in their activities by glucuronidation activity assay, LC-MS, HPLC, homologous sequence comparisons, and molecular docking. Curcumin has higher metabolic activity than THC in HLM and UGT2B7, while the keto-enol isomers of curcumin and THC were distinctly different under different pH, and their structural transformations were hypothesized. Furthermore, UGT1A and UGT2B are differential sequences of curcumin and THC in UGTs. The binding sites and patterns of curcumin and THC in UGT2B7 are markedly different. In summary, the difference in keto-enolic interconversion isomerism between curcumin and THC is the main factor causing the difference in their activities, which provides a scientific basis for the development of curcumin.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article