Your browser doesn't support javascript.
loading
Ferrihydrite-mediated methanotrophic nitrogen fixation in paddy soil under hypoxia.
Yu, Linpeng; Jia, Rong; Liu, Shiqi; Li, Shuan; Zhong, Sining; Liu, Guohong; Zeng, Raymond Jianxiong; Rensing, Christopher; Zhou, Shungui.
Afiliación
  • Yu L; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Jia R; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Liu S; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, China.
  • Li S; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Zhong S; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Liu G; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Zeng RJ; Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
  • Rensing C; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Zhou S; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
ISME Commun ; 4(1): ycae030, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38524761
ABSTRACT
Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the 15N fixation rate by 13-fold from 0.02 to 0.28 µmol 15N2 (g dry weight soil) -1 d-1. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that Methylocystis, Methylophilaceae, and Methylomicrobium were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (13C or 15N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that Methylocystis and Methylophilaceae had the potential to perform methane-induced BNF and likely utilized riboflavin and c-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2024 Tipo del documento: Article País de afiliación: China
...