Your browser doesn't support javascript.
loading
Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production.
Meliawati, Meliawati; Volke, Daniel C; Nikel, Pablo I; Schmid, Jochen.
Afiliación
  • Meliawati M; Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
  • Volke DC; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Nikel PI; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Schmid J; Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
Microb Biotechnol ; 17(3): e14438, 2024 03.
Article en En | MEDLINE | ID: mdl-38529712
ABSTRACT
Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L-1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Butanoles / Paenibacillus / Paenibacillus polymyxa Idioma: En Revista: Microb Biotechnol Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Butanoles / Paenibacillus / Paenibacillus polymyxa Idioma: En Revista: Microb Biotechnol Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos