Your browser doesn't support javascript.
loading
Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles.
Navarro-López, Diego E; Perfecto-Avalos, Yocanxóchitl; Zavala, Araceli; de Luna, Marco A; Sanchez-Martinez, Araceli; Ceballos-Sanchez, Oscar; Tiwari, Naveen; López-Mena, Edgar R; Sanchez-Ante, Gildardo.
Afiliación
  • Navarro-López DE; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
  • Perfecto-Avalos Y; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
  • Zavala A; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
  • de Luna MA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
  • Sanchez-Martinez A; Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico.
  • Ceballos-Sanchez O; Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico.
  • Tiwari N; Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain.
  • López-Mena ER; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
  • Sanchez-Ante G; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico.
Antibiotics (Basel) ; 13(3)2024 Feb 27.
Article en En | MEDLINE | ID: mdl-38534655
ABSTRACT
The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antibiotics (Basel) Año: 2024 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Antibiotics (Basel) Año: 2024 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza