Your browser doesn't support javascript.
loading
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
Grassmann, Greta; Miotto, Mattia; Desantis, Fausta; Di Rienzo, Lorenzo; Tartaglia, Gian Gaetano; Pastore, Annalisa; Ruocco, Giancarlo; Monti, Michele; Milanetti, Edoardo.
Afiliación
  • Grassmann G; Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome 00185, Italy.
  • Miotto M; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome 00161, Italy.
  • Desantis F; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome 00161, Italy.
  • Di Rienzo L; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome 00161, Italy.
  • Tartaglia GG; The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genoa 16163, Italy.
  • Pastore A; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome 00161, Italy.
  • Ruocco G; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome 00161, Italy.
  • Monti M; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
  • Milanetti E; Center for Human Technologies, Genoa 16152, Italy.
Chem Rev ; 124(7): 3932-3977, 2024 Apr 10.
Article en En | MEDLINE | ID: mdl-38535831
ABSTRACT
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Simulación de Dinámica Molecular Límite: Humans Idioma: En Revista: Chem Rev Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Simulación de Dinámica Molecular Límite: Humans Idioma: En Revista: Chem Rev Año: 2024 Tipo del documento: Article País de afiliación: Italia