Your browser doesn't support javascript.
loading
Observation of naturally canalized phonon polaritons in LiV2O5 thin layers.
F Tresguerres-Mata, Ana I; Lanza, Christian; Taboada-Gutiérrez, Javier; Matson, Joseph R; Álvarez-Pérez, Gonzalo; Isobe, Masahiko; Tarazaga Martín-Luengo, Aitana; Duan, Jiahua; Partel, Stefan; Vélez, María; Martín-Sánchez, Javier; Nikitin, Alexey Y; Caldwell, Joshua D; Alonso-González, Pablo.
Afiliación
  • F Tresguerres-Mata AI; Department of Physics, University of Oviedo, Oviedo, 33006, Spain.
  • Lanza C; Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain.
  • Taboada-Gutiérrez J; Department of Physics, University of Oviedo, Oviedo, 33006, Spain.
  • Matson JR; Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain.
  • Álvarez-Pérez G; Department of Quantum Matter Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland.
  • Isobe M; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, 37212, TN, USA.
  • Tarazaga Martín-Luengo A; Department of Physics, University of Oviedo, Oviedo, 33006, Spain.
  • Duan J; Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain.
  • Partel S; Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti 14, Arnesano, 73010, Italy.
  • Vélez M; Max-Planck Institute for Solid State Research, Stuttgart, D-70569, Germany.
  • Martín-Sánchez J; Department of Physics, University of Oviedo, Oviedo, 33006, Spain.
  • Nikitin AY; Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain.
  • Caldwell JD; Department of Physics, University of Oviedo, Oviedo, 33006, Spain.
  • Alonso-González P; Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain.
Nat Commun ; 15(1): 2696, 2024 Mar 27.
Article en En | MEDLINE | ID: mdl-38538588
ABSTRACT
Polariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α-MoO3, by combining α-MoO3 and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces. Ideally, it would be possible to canalize polaritons "naturally" in a single pristine layer. Here, we theoretically predict and experimentally demonstrate naturally canalized phonon polaritons (PhPs) in a single thin layer of the vdW crystal LiV2O5. In addition to canalization, PhPs in LiV2O5 exhibit strong field confinement ( λ p ~ λ 0 27 ), slow group velocity (0.0015c), and ultra-low losses (lifetimes of 2 ps). Our findings are promising for the implementation of low-loss optical nanodevices where strongly directional light propagation is needed, such as waveguides or optical routers.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: España