Your browser doesn't support javascript.
loading
Aquatic photolysis of high-risk fluorinated liquid crystal monomers: Kinetics, toxicity evaluation, and mechanisms.
Wu, Jingyi; Ye, Weibiao; Feng, Yiping; Lao, Wenhao; Li, Junchun; Lu, Haijian; Liu, Guoguang; Su, Guanyong; Deng, Yirong.
Afiliación
  • Wu J; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
  • Ye W; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
  • Feng Y; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address: ypfeng@gdut.edu.cn.
  • Lao W; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
  • Li J; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
  • Lu H; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
  • Liu G; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
  • Su G; Jiangsu Key Laboratory of Chemical Pollution Control and Research Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Deng Y; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Contaminated Sites Environm
Water Res ; 255: 121510, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38555780
ABSTRACT
Despite the frequent detection of fluorinated liquid-crystal monomers (FLCMs) in the environment, the level of understanding of their fate, toxicity, and transformation remains insufficient. Herein, we investigated the degradation kinetics and mechanism of an FLCM (4-cyano-3-fluorophenyl 4-ethylbenzoate, CEB-F) under ultraviolet (UV) photolysis in aquatic environment. Our findings demonstrated that the UV photolysis of CEB-F followed first-order kinetics. Photodegradation products were identified using liquid chromatography with mass spectrometry, and detailed reaction pathways were proposed. It is postulated that through the attack of reactive oxygen species, hydroxylation, and CO/C-F bond cleavage, CEB-F gradually degraded into small molecular compounds, releasing fluorine ions. Acute immobilization tests with Daphnia magna (D. magna) revealed significant acute toxicity of CEB-F, with LC50 values ranging from 1.023 to 0.0536 µM over 24 to 96 h, emphasizing the potential high risk of FLCMs in aquatic ecosystems if inadvertently discharged. Interestingly, we found that the toxicity of CEB-F photolysis reaction solutions was effectively reduced. Through catalase and acetylcholinesterase activities analysis along with molecular docking simulation, we proposed differences in the underlying toxicity mechanisms of CEB-F and its photolysis products to D. magna. These findings highlight the potential harmful effects of FLCMs on aquatic ecosystems and enrich our understanding of the photolysis behavior of FLCMs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article País de afiliación: China