Fixed-point algorithms for solving the critical value and upper tail quantile of Kuiper's statistics.
Heliyon
; 10(7): e28274, 2024 Apr 15.
Article
en En
| MEDLINE
| ID: mdl-38560183
ABSTRACT
Kuiper's statistic is a good measure for the difference of ideal distribution and empirical distribution in the goodness-of-fit test. However, it is a challenging problem to solve the critical value and upper tail quantile, or simply Kuiper pair, of Kuiper's statistics due to the difficulties of solving the nonlinear equation and reasonable approximation of infinite series. In this work, the contributions lie in three perspectives firstly, the second order approximation for the infinite series of the cumulative distribution of the critical value is used to achieve higher precision; secondly, the principles and fixed-point algorithms for solving the Kuiper pair are presented with details; finally, finally, a mistake about the critical value cnα for (α,n)=(0.01,30) in Kuiper's distribution table has been labeled and corrected where n is the sample capacity and α is the upper tail quantile. The algorithms are verified and validated by comparing with the table provided by Kuiper. The methods and algorithms proposed are enlightening and worth of introducing to the college students, computer programmers, engineers, experimental psychologists and so on.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Heliyon
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido