Your browser doesn't support javascript.
loading
Neuron-targeted liposomal coenzyme Q10 attenuates neuronal ferroptosis after subarachnoid hemorrhage by activating the ferroptosis suppressor protein 1/coenzyme Q10 system.
Peng, Zheng; Ding, Yi-Nan; Yang, Zheng-Mao; Li, Xiao-Jian; Zhuang, Zong; Lu, Yue; Tang, Qiu-Sha; Hang, Chun-Hua; Li, Wei.
Afiliación
  • Peng Z; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: DG21350071@smail.nju.edu.cn.
  • Ding YN; Department of Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China. Electronic address: dingyinanwl@126.com.
  • Yang ZM; Wuhan University, Wuhan, China. Electronic address: zhengmaoyang@gmail.com.
  • Li XJ; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: lixiaojian@smail.nju.edu.cn.
  • Zhuang Z; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: zhuangzong@njglyy.com.
  • Lu Y; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: luyue120@nju.edu.cn.
  • Tang QS; Medical School of Southeast University, Nanjing, China. Electronic address: panyixi-tqs@163.com.
  • Hang CH; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: hang1965@nju.edu.cn.
  • Li W; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China. Electronic address: wei.li@nju.edu.cn.
Acta Biomater ; 179: 325-339, 2024 04 15.
Article en En | MEDLINE | ID: mdl-38561074
ABSTRACT
Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. SAH disrupts the blood‒brain barrier, leading to the release of iron ions from blood within the subarachnoid space, subsequently inducing neuronal ferroptosis. A recently discovered protein, known as ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10 by introducing the neuron-targeting peptide Tet1 onto the surface of liposomal CoQ10. Our objective was to determine whether this formulation could activate the FSP1 system and subsequently inhibit neuronal ferroptosis. Our findings revealed that neuron-targeted liposomal CoQ10 effectively localized to neurons at the lesion site after SAH. Furthermore, it facilitated the upregulation of FSP1, reduced the accumulation of malondialdehyde and reactive oxygen species, inhibited neuronal ferroptosis, and exerted neuroprotective effects both in vitro and in vivo. Our study provides evidence that supplementation with CoQ10 can effectively activate the FSP1 system. Additionally, we developed a neuron-targeted liposomal CoQ10 formulation that can be selectively delivered to neurons at the site of SAH. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH. STATEMENT OF

SIGNIFICANCE:

Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. Ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10. We find that it effectively localized to neurons at the lesion site after SAH and activated the FSP1/CoQ10 system. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH and other central nervous system diseases characterized by disruption of the blood-brain barrier.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hemorragia Subaracnoidea / Ubiquinona / Ferroptosis / Liposomas / Neuronas Límite: Animals Idioma: En Revista: Acta Biomater Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hemorragia Subaracnoidea / Ubiquinona / Ferroptosis / Liposomas / Neuronas Límite: Animals Idioma: En Revista: Acta Biomater Año: 2024 Tipo del documento: Article