Your browser doesn't support javascript.
loading
A nanobody-mediated drug system against largemouth bass virus delivered by bacterial nanocellulose in Micropterus salmoides.
He, Maosheng; Yan, Ying; Liu, Xiang; Li, Linhan; Yang, Bin; Liu, Mingzhu; Yu, Qing; Wang, Erlong; Li, Pengfei; Liu, Tianqiang; Wang, Gaoxue.
Afiliación
  • He M; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Yan Y; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; En
  • Liu X; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universit
  • Li L; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Yang B; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universit
  • Liu M; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
  • Yu Q; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
  • Wang E; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; En
  • Li P; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, Guangxi 530007, China. Electronic address: pf
  • Liu T; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; En
  • Wang G; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universit
Int J Biol Macromol ; 266(Pt 2): 131146, 2024 May.
Article en En | MEDLINE | ID: mdl-38561116
ABSTRACT
Diseases caused by pathogens severely hampered the development of aquaculture, especially largemouth bass virus (LMBV) has caused massive mortality and severe economic losses to the culture of largemouth bass (Micropterus salmoides). Considering the environmental hazards and human health, effective and environmentally friendly therapy strategy against LMBV is of vital importance and in pressing need. In the present study, a novel nanobody (NbE4) specific for LMBV was selected from a phage display nanobody library. Immunofluorescence and indirect ELISA showed that NbE4 could recognize LMBV virions and had strong binding capacity, but RT-qPCR evidenced that NBE4 did not render the virus uninfectious. Besides, antiviral drug ribavirin was used to construct a targeted drug system delivered by bacterial nanocellulose (BNC). RT-qPCR revealed that NbE4 could significantly enhance the antiviral activity of ribavirin in vitro and in vivo. The targeted drug delivery system (BNC-Ribavirin-NbE4, BRN) reduced the inflammatory response caused by LMBV infection and improved survival rate (BRN-L, 33.3 %; BRN-M, 46.7 %; BRN-H, 56.7 %)compared with control group (13.3 %), ribavirin group (RBV, 26.7 %) and BNC-ribavirin (BNC-R, 40.0 %), respectively. This research provided an effective antiviral strategy that improved the drug therapeutic effect and thus reduced the dosage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antivirales / Lubina / Celulosa / Anticuerpos de Dominio Único / Enfermedades de los Peces Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antivirales / Lubina / Celulosa / Anticuerpos de Dominio Único / Enfermedades de los Peces Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China