Your browser doesn't support javascript.
loading
SARS-CoV-2 Omicron Subvariants Do Not Differ Much in Binding Affinity to Human ACE2: A Molecular Dynamics Study.
Nguyen, Hoang Linh; Nguyen, Thai Quoc; Li, Mai Suan.
Afiliación
  • Nguyen HL; Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.
  • Nguyen TQ; Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam.
  • Li MS; Faculty of Physics, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 100000, Vietnam.
J Phys Chem B ; 128(14): 3340-3349, 2024 Apr 11.
Article en En | MEDLINE | ID: mdl-38564480
ABSTRACT
The emergence of the variant of concern Omicron (B.1.1.529) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exacerbates the COVID-19 pandemic due to its high contagious ability. Studies have shown that the Omicron binds human ACE2 more strongly than the wild type. The prevalence of Omicron in new cases of COVID-19 promotes novel lineages with improved receptor binding affinity and immune evasion. To shed light on this open problem, in this work, we investigated the binding free energy of the receptor binding domain of the Omicron lineages BA.2, BA.2.3.20, BA.3, BA4/BA5, BA.2.75, BA.2.75.2, BA.4.6, XBB.1, XBB.1.5, BJ.1, BN.1, BQ.1.1, and CH.1.1 to human ACE2 using all-atom molecular dynamics simulation and the molecular mechanics Poisson-Boltzmann surface area method. The results show that these lineages have increased binding affinity compared to the BA.1 lineage, and BA.2.75 and BA.2.75.2 subvariants bind ACE2 more strongly than others. However, in general, the binding affinities of the Omicron lineages do not differ significantly from each other. The electrostatic force dominates over the van der Waals force in the interaction between Omicron lineages and human cells. Based on our results, we argue that viral evolution does not further improve the affinity of SARS-CoV-2 for ACE2 but may increase immune evasion.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Enzima Convertidora de Angiotensina 2 / SARS-CoV-2 Límite: Humans Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Vietnam Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Enzima Convertidora de Angiotensina 2 / SARS-CoV-2 Límite: Humans Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Vietnam Pais de publicación: Estados Unidos