Your browser doesn't support javascript.
loading
Simulated nitrogen load promoted mineralization of N2P1 compounds and accumulation of N4S2 compounds in soil dissolved organic matter in a typical subtropical estuarine marsh.
Li, Yajin; Si, Youtao; Sun, Zhigao; Hu, Xingyun; Shi, Zixiang; Li, Yanzhe; Wu, Huihui.
Afiliación
  • Li Y; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China.
  • Si Y; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China;
  • Sun Z; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China;
  • Hu X; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China.
  • Shi Z; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China.
  • Li Y; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China.
  • Wu H; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, People's Republic of China; Key Laboratory of Humid Subtropical Eco-Geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350117, People's Republic of China.
Sci Total Environ ; 927: 172107, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38575015
ABSTRACT
Soil dissolved organic matter (DOM) is the most reactive pool in estuarine marshes, playing an important role in the biogeochemical processes of biogenetic elements. To investigate the impacts of enhanced nitrogen (N) load on DOM molecular composition and its interactions with microbes in typical Cyperus malaccensis mashes of the Min River estuary, a field N load experiment with four N levels (0, 37.50, 50 and 100 g exogenous N m-2 yr-1, respectively; applied monthly for a total of seven months) was performed. DOM molecular composition was characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the microbial community compositions (MCC, including fungi and bacteria) were determined by high-throughput sequencing technique, and their relationships were presented by co-occurrence network analysis. The results indicated that enhanced N load had significant impacts on soil DOM molecular composition, with N/C and P/C of DOM decreasing but S/C increasing markedly. Meanwhile, enhanced N load decreased the percentages of N2P1 compounds (primarily lipids) but increased those of N4S2 compounds (mainly lignins and lipids). The relative abundances of lignins significantly increased with increasing N load levels, whereas the proportions of lipids decreased. The abundance of N2P1 and N4S2 compounds was primarily positively correlated with eutrophic and oligotrophic microorganisms, respectively. Therefore, mineralization of N2P1 compounds might act as a source to replenish inorganic P, while enrichment of N4S2 compounds may make great contribution to organic S accumulation. Overall, enhanced N load promoted P depletion and S enrichment via altering plant growth, litter decomposition and MCC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Humedales / Nitrógeno País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Humedales / Nitrógeno País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article