Your browser doesn't support javascript.
loading
Bichromatic tetraphasic full-field optical coherence microscopy.
Iyer, Rishyashring R; Zurauskas, Mantas; Rao, Yug; Chaney, Eric J; Boppart, Stephen A.
Afiliación
  • Iyer RR; University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States.
  • Zurauskas M; University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States.
  • Rao Y; University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States.
  • Chaney EJ; University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States.
  • Boppart SA; University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States.
J Biomed Opt ; 29(Suppl 2): S22704, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38584966
ABSTRACT

Significance:

Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two

limitations:

suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast.

Aim:

We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts.

Approach:

BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast.

Results:

BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors.

Conclusions:

BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía de Coherencia Óptica / Microscopía Límite: Animals Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía de Coherencia Óptica / Microscopía Límite: Animals Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos