Your browser doesn't support javascript.
loading
Interlayer coupling modulated for thermoelectric transport characterization of black arsenic nanoscale devices.
Shi, Yuechao; Xu, Jintao; Qiu, Yifeng; Peng, Xiaoge; Liu, Ye; Liu, Shuaixian; Zhang, Bei; Long, Mengqiu.
Afiliación
  • Shi Y; School of Physical Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
  • Xu J; School of Physics, Central South University, Changsha 410083, People's Republic of China.
  • Qiu Y; School of Physics, Central South University, Changsha 410083, People's Republic of China.
  • Peng X; School of Physical Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
  • Liu Y; School of Physics, Central South University, Changsha 410083, People's Republic of China.
  • Liu S; School of Physics, Central South University, Changsha 410083, People's Republic of China.
  • Zhang B; School of Physics, Central South University, Changsha 410083, People's Republic of China.
  • Long M; School of Physical Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
J Phys Condens Matter ; 36(30)2024 Apr 26.
Article en En | MEDLINE | ID: mdl-38588675
ABSTRACT
Modulating interlayer coupling modes can effectively enhance the thermoelectric properties of nanomaterials or nanoscale devices. By using density functional theory combined with non-equilibrium Green's function method, we investigate the thermoelectric properties of zigzag-type black arsenic nanoscale devices with varying interlayer coupling modes. Our results show that altering the interlayer coupling mode significantly modulates the thermoelectric properties of the system. Specifically, we consider four coupling modes with different strengths, by modulating different interlayer overlap patterns. Notably, in the weaker interlayer coupling mode, the system exhibits enhanced thermoelectric properties due to increased interface phonon scattering, for example, the M4reaching a peak value of 2.23 atµ= -0.73 eV. Furthermore, we explore the temperature-dependent behavior of each coupling model. The results suggest that the thermoelectric characteristics are more sensitive to temperature variations in the weaker coupling modes. These insights provide valuable guidance for enhancing the thermoelectric performance of nanoscale devices through precise interlayer coupling modulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter / J. phys. condens. matter / Journal of physics.Condensed matter (Print) Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter / J. phys. condens. matter / Journal of physics.Condensed matter (Print) Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido