Your browser doesn't support javascript.
loading
Using EEG total energy as a noninvasively tracking of intracranial (and cerebral perfussion) pressure in an animal model: A pilot study.
Pose, Fernando; Videla, Carlos; Campanini, Giovanni; Ciarrocchi, Nicolas; Redelico, Francisco O.
Afiliación
  • Pose F; Instituto de Medicina Translacional e Ingeniería Biomédica, CONICET-Hospital Italiano de Buenos Aires - Instituto Universitario del Hospital Italiano de Buenos Aires, Potosi 4265, Buenos Aires, C1199ACL, Argentina.
  • Videla C; Servicio de Terapia Intensiva de Adultos, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, Buenos Aires, C1199ACL, Argentina.
  • Campanini G; Instituto de Medicina Translacional e Ingeniería Biomédica, CONICET-Hospital Italiano de Buenos Aires - Instituto Universitario del Hospital Italiano de Buenos Aires, Potosi 4265, Buenos Aires, C1199ACL, Argentina.
  • Ciarrocchi N; Servicio de Terapia Intensiva de Adultos, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, Buenos Aires, C1199ACL, Argentina.
  • Redelico FO; Instituto de Medicina Translacional e Ingeniería Biomédica, CONICET-Hospital Italiano de Buenos Aires - Instituto Universitario del Hospital Italiano de Buenos Aires, Potosi 4265, Buenos Aires, C1199ACL, Argentina.
Heliyon ; 10(7): e28544, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38601571
ABSTRACT

PURPOSE:

This study aims to describe the total EEG energy during episodes of intracranial hypertension (IH) and evaluate its potential as a classification feature for IH. NEW

METHODS:

We computed the sample correlation coefficient between intracranial pressure (ICP) and the total EEG energy. Additionally, a generalized additive model was employed to assess the relationship between arterial blood pressure (ABP), total EEG energy, and the odds of IH.

RESULTS:

The median sample cross-correlation between total EEG energy and ICP was 0.7, and for cerebral perfusion pressure (CPP) was 0.55. Moreover, the proposed model exhibited an accuracy of 0.70, sensitivity of 0.53, specificity of 0.79, precision of 0.54, F1-score of 0.54, and an AUC of 0.7. COMPARISON WITH EXISTING

METHODS:

The only existing comparable methods, up to our knowledge, use 13 variables as predictor of IH, our model uses only 3, our model, as it is an extension of the generalized model is interpretable and it achieves the same performance.

CONCLUSION:

These findings hold promise for the advancement of multimodal monitoring systems in neurocritical care and the development of a non-invasive ICP monitoring tool, particularly in resource-constrained environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Reino Unido