Your browser doesn't support javascript.
loading
Hydrogenolysis of Poly(Ethylene-co-Vinyl Alcohol) and Related Polymer Blends over Ruthenium Heterogeneous Catalysts.
Oberhausen, Christine M; Mahajan, Jignesh S; Sun, Jessie A; Epps, Thomas H; Korley, LaShanda T J; Vlachos, Dionisios G.
Afiliación
  • Oberhausen CM; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
  • Mahajan JS; Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA.
  • Sun JA; Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, DE 19716, USA.
  • Epps TH; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
  • Korley LTJ; Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA.
  • Vlachos DG; Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
ChemSusChem ; : e202400238, 2024 Apr 12.
Article en En | MEDLINE | ID: mdl-38609332
ABSTRACT
The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste - poly(ethylene-co-vinyl alcohol) (EVOH) and related polymer blends - into alkane products. We report that Ru/ZrO2 is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1-C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in-situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C-C scission reveal that the hydrogenolysis of EVOH is slower than low-density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania