Your browser doesn't support javascript.
loading
Evidence of Ferromagnetism and Ultrafast Dynamics of Demagnetization in an Epitaxial FeCl2 Monolayer.
Zhou, Xuhan; Jiang, Tianran; Tao, Ye; Ji, Yi; Wang, Jingying; Lai, Tianshu; Zhong, Dingyong.
Afiliación
  • Zhou X; School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
  • Jiang T; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
  • Tao Y; Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
  • Ji Y; Guangzhou No. 89 Secondary School, Guangzhou 510520, China.
  • Wang J; School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
  • Lai T; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
  • Zhong D; School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
ACS Nano ; 18(16): 10912-10920, 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38613502
ABSTRACT
The development of two-dimensional (2D) magnetism is driven not only by the interest of low-dimensional physics but also by potential applications in high-density miniaturized spintronic devices. However, 2D materials possessing a ferromagnetic order with a relatively high Curie temperature (Tc) are rare. In this paper, the evidence of ferromagnetism in monolayer FeCl2 on Au(111) surfaces, as well as the interlayer antiferromagnetic coupling of bilayer FeCl2, is characterized by using spin-polarized scanning tunneling microscopy. A Curie temperature (Tc) of ∼147 K is revealed for monolayer FeCl2, based on our static magneto-optical Kerr effect measurements. Furthermore, temperature-dependent magnetization dynamics is investigated by the time-resolved magneto-optical Kerr effect. A transition from one- to two-step demagnetization occurs as the lattice temperature approaches Tc, which supports the Elliott-Yafet spin relaxation mechanism. The findings contribute to a deeper understanding of the underlying mechanisms governing ultrafast magnetization in 2D ferromagnetic materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos