Extreme terahertz magnon multiplication induced by resonant magnetic pulse pairs.
Nat Commun
; 15(1): 3214, 2024 Apr 13.
Article
en En
| MEDLINE
| ID: mdl-38615025
ABSTRACT
Nonlinear interactions of spin-waves and their quanta, magnons, have emerged as prominent candidates for interference-based technology, ranging from quantum transduction to antiferromagnetic spintronics. Yet magnon multiplication in the terahertz (THz) spectral region represents a major challenge. Intense, resonant magnetic fields from THz pulse-pairs with controllable phases and amplitudes enable high order THz magnon multiplication, distinct from non-resonant nonlinearities such as the high harmonic generation by below-band gap electric fields. Here, we demonstrate exceptionally high-order THz nonlinear magnonics. It manifests as 7th-order spin-wave-mixing and 6th harmonic magnon generation in an antiferromagnetic orthoferrite. We use THz two-dimensional coherent spectroscopy to achieve high-sensitivity detection of nonlinear magnon interactions up to six-magnon quanta in strongly-driven many-magnon correlated states. The high-order magnon multiplication, supported by classical and quantum spin simulations, elucidates the significance of four-fold magnetic anisotropy and Dzyaloshinskii-Moriya symmetry breaking. Moreover, our results shed light on the potential quantum fluctuation properties inherent in nonlinear magnons.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido