Your browser doesn't support javascript.
loading
Cross-Sectional Analysis of Exome Sequencing Diagnosis in Patients With Neurologic Phenotypes Facing Barriers to Clinical Testing.
Watson, Sonya; Ngo, Kathie J; Stevens, Hannah A; Wong, Darice Y; Kim, Jihye; Song, Yongjun; Han, Beomman; Hyun, Seong-In; Khang, Rin; Ryu, Seung Woo; Lee, Eugene; Seo, Gohun; Lee, Hane; Lajonchere, Clara; Fogel, Brent L.
Afiliación
  • Watson S; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Ngo KJ; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Stevens HA; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Wong DY; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Kim J; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Song Y; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Han B; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Hyun SI; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Khang R; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Ryu SW; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Lee E; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Seo G; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Lee H; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Lajonchere C; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
  • Fogel BL; From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicin
Neurol Genet ; 10(3): e200133, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38617022
ABSTRACT
Background and

Objectives:

Exome sequencing (ES) demonstrates a 20-50 percent diagnostic yield for patients with a suspected monogenic neurologic disease. Despite the proven efficacy in achieving a diagnosis for such patients, multiple barriers for obtaining exome sequencing remain. This study set out to assess the efficacy of ES in patients with primary neurologic phenotypes who were appropriate candidates for testing but had been unable to pursue clinical testing.

Methods:

A total of 297 patients were identified from the UCLA Clinical Neurogenomics Research Center Biobank, and ES was performed, including bioinformatic assessment of copy number variation and repeat expansions. Information regarding demographics, clinical indication for ES, and reason for not pursuing ES clinically were recorded. To assess diagnostic efficacy, variants were interpreted by a multidisciplinary team of clinicians, bioinformaticians, and genetic counselors in accordance with the American College of Medical Genetics and Genomics variant classification guidelines. We next examined the specific barriers to testing for these patients, including how frequently insurance-related barriers such as coverage denials and inadequate coverage of cost were obstacles to pursuing exome sequencing.

Results:

The cohort primarily consisted of patients with sporadic conditions (n = 126, 42.4%) of adult-onset (n = 239, 80.5%). Cerebellar ataxia (n = 225, 75.8%) was the most common presenting neurologic phenotype. Our study found that in this population of mostly adult patients with primary neurologic phenotypes that were unable to pursue exome sequencing clinically, 47 (15.8%) had diagnostic results while an additional 24 patients (8.1%) had uncertain results. Of the 297 patients, 206 were initially recommended for clinical exome but 88 (42.7%) could not pursue ES because of insurance barriers, of whom 14 (15.9%) had diagnostic findings, representing 29.8% of all patients with diagnostic findings. In addition, the incorporation of bioinformatic repeat expansion testing was valuable, identifying a total of 8 pathogenic repeat expansions (17.0% of all diagnostic findings) including 3 of the common spinocerebellar ataxias and 2 patients with Huntington disease.

Discussion:

These findings underscore the importance and value of clinical ES as a diagnostic tool for neurogenetic disease and highlight key barriers that prevent patients from receiving important clinical information with potential treatment and psychosocial implications for patients and family members.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Neurol Genet Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Neurol Genet Año: 2024 Tipo del documento: Article
...