Your browser doesn't support javascript.
loading
[Spatial-temporal Variation and Spatial Differentiation Geographic Detection of PM2.5 Concentration in the Shandong Province Based on Spatial Scale Effect].
Xu, Yong; Wei, Meng-Xin; Zou, Bin; Guo, Zhen-Dong; Li, Shen-Xin.
Afiliación
  • Xu Y; School of Geosciences and Info-physic, Central South University, Changsha 410083, China.
  • Wei MX; College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China.
  • Zou B; College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China.
  • Guo ZD; School of Geosciences and Info-physic, Central South University, Changsha 410083, China.
  • Li SX; College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China.
Huan Jing Ke Xue ; 45(5): 2596-2612, 2024 May 08.
Article en Zh | MEDLINE | ID: mdl-38629524
ABSTRACT
PM2.5 remote sensing data was applied in this study, and Theil-Sen Median trend analysis and the Mann-Kendall significance test were utilized to analyze the temporal and spatial variation in PM2.5 in the Shandong Province from 2000 to 2021. The influencing power of the influencing factors on the spatial differentiation of PM2.5 concentration in the Shandong Province was detected at the provincial-city-county levels based on Geo-detector data. The results showed that① on the temporal scale, the mean ρ(PM2.5)in the Shandong Province ranged from 38.15 to 88.63 µg·m-3 from 2000 to 2021, which was slightly higher than the secondary limit of inhalable particulate matter (35 µg·m-3) in the Ambient Air Quality Standards. On the interannual scale, 2013 was the peak year for the variation in ρ(PM2.5) with a value of 83.36 µg·m-3, according to which the trend of PM2.5 concentrations in the Shandong Province was divided into two phasesa continuous increase and a rapid decrease. On the seasonal scale, PM2.5 concentration presented the distribution characteristics of "low in summer and high in winter and moderate in spring and autumn" and the U-shaped change rule of first decreasing and then increasing. ② On the spatial scale, the PM2.5 concentration in the Shandong Province presented a spatial distribution pattern of "high in the west and low in the east." The areas with high PM2.5 concentration were distributed in the western area of the Shandong Province, whereas the areas with low PM2.5 concentration were distributed in the eastern peninsula region. The spatial variation in the changing trend of PM2.5 concentration showed significant spatial heterogeneity, and the extremely significant decrease was mainly distributed in the eastern peninsula region. ③ The results of factor detection showed that climate factor was an important factor affecting the spatial differentiation of PM2.5 concentration in the Shandong Province. Mean temperature had the highest influence on the spatial differentiation of PM2.5 concentration in the Shandong Province, with a q value of 0.512. Provincial-city-county multi-scale detection results showed that the influencing factors affecting the spatial differentiation of PM2.5 concentration and their influencing power differed at different spatial scales. At the provincial scale, mean temperature, sunshine duration, and slope were the main factors affecting the spatial differentiation of PM2.5 concentration. At the city level, precipitation, elevation, and relative humidity were the main factors affecting the spatial differentiation of PM2.5. At the county level, precipitation, mean temperature, and sunshine duration were the main factors affecting the spatial variation in PM2.5 concentration.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: Zh Revista: Huan Jing Ke Xue Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: Zh Revista: Huan Jing Ke Xue Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: China