Your browser doesn't support javascript.
loading
Radiation-Assisted Assembly of a Highly Dispersed Nanomolybdenum-Functionalized Covalent Organic Framework.
Zhang, Mingxing; Mao, Xuanzhi; Chen, Junchang; He, Linwei; Wang, Yumin; Zhao, Xiaofang; Zhang, Fan; Zhao, Fuqiang; Zhang, Kai; Wu, Guozhong; Chai, Zhifang; Wang, Shuao.
Afiliación
  • Zhang M; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Mao X; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  • Chen J; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • He L; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Wang Y; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Zhao X; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Zhang F; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  • Zhao F; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Zhang K; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  • Wu G; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  • Chai Z; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Wang S; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
ACS Appl Mater Interfaces ; 16(17): 22504-22511, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38634758
ABSTRACT
Two-dimensional covalent organic frameworks (2D COFs), featuring a large surface area and 1D pore structure, serve as promising scaffolds for anchoring functional guest compounds, which can significantly enhance their performance and thus expand their potential applications. Postsynthetic strategy for COFs functionalization is versatile but challenging because of their tedious procedure with high time and energy consumption, generation of excess reaction waste, and damage to COF crystallinity. We report in this work a general strategy for the synthesis of inorganic nanocompound-functionalized COF composites in a one-pot way. Specifically, a high-crystallinity nanoscale molybdenum compound is successfully introduced into a COF skeleton with high dispersion in situ during the crystallization process of the COF induced by gamma ray radiation under ambient conditions. The obtained COF@Mo composites exhibit remarkable sorption performance for methylene blue and many other organic dyes in aqueous solution with the advantages of ultrarapid uptake dynamics and high removal efficiency.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China