Your browser doesn't support javascript.
loading
Modification of a Selective NTRK2 Agonist and Confirmation of Activity in a Glaucoma-on-a-Chip Model.
Nafian, Fatemeh; Yazdani, Shahin; Javad Rasaee, Mohammad; Kamali Doust Azad, Babak; Daftarian, Narsis; Rezaei Kanavi, Mozhgan.
Afiliación
  • Nafian F; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Yazdani S; Department of Medical Laboratory Sciences, Faculty of Paramedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
  • Javad Rasaee M; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Kamali Doust Azad B; Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
  • Daftarian N; School of Electrical and Computer Engineering, Tehran University, Tehran, Iran.
  • Rezaei Kanavi M; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
J Ophthalmic Vis Res ; 19(1): 58-70, 2024.
Article en En | MEDLINE | ID: mdl-38638624
ABSTRACT

Purpose:

RNYK is a selective agonist of the neurotrophic tyrosine kinase receptor type 2 (NTRK2) which has been screened from a phage-displayed peptide library. Its sequence is SGVYKVAYDWQH, similar to a native NTRK2 ligand, that is, brain-derived neurotrophic factor (BDNF). The current study was performed to recognize and confirm critical residues for RNYK activity in a glaucoma-on-a-chip model.

Methods:

We designed a modified RNYK (mRNYK) peptide based on hotspots of the RNYK sequence identified by alanine scanning. The critical residues consisted of tyrosine, valine, aspartic acid, and tryptophan (YVDW); however, lysine and glutamine were also maintained in the final sequence (YKVDWQ) for forming amide bonds and peptide dimerization. The affinity of mRNYK binding was confirmed by testing against NTRK2 receptors on the surface of ATRA-treated SH-SY5Y cells. The neuroprotective effect of mRNYK was also evaluated in cell culture after elevated pressure insult in a glaucoma-on-a-chip model.

Results:

The primary amine on the lysine side-chain from one sequence (YKVDWQ) reacted with a γ-carboxamide group of glutamine from the other sequence, forming dimeric mRNYK. In silico, molecular dynamic simulations of the mRNYK-NTRK2 complex showed more stable and stronger interactions as compared to the RNYK-NTRK2 complex. In vitro, mRNYK demonstrated a neuroprotective effect on SH-SY5Y cells under normal and elevated pressure comparable to RNYK. The 50% effective concentration (logEC50) for mRNYK was 0.7009, which was better than RNYK with a logEC50 of 0.8318.

Conclusion:

The modified peptide studied herein showed improved stability over the original peptide (RNYK) and demonstrated potential for use as a BDNF agonist with neuroprotective properties for treatment of neurodegenerative disorders such as glaucoma.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Ophthalmic Vis Res Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: AE / EMIRADOS ÁRABES UNIDOS / EMIRATOS ARABES UNIDOS / UNITED ARAB EMIRATES

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Ophthalmic Vis Res Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: AE / EMIRADOS ÁRABES UNIDOS / EMIRATOS ARABES UNIDOS / UNITED ARAB EMIRATES