Your browser doesn't support javascript.
loading
SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure.
Chen, Qinghua; Zou, Bin; Wang, Xinfeng; Zhou, Xingguo; Yang, Gongxian; Lai, Qingguo; Zhao, Yun.
Afiliación
  • Chen Q; Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experi
  • Zou B; Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experi
  • Wang X; Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experi
  • Zhou X; Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experi
  • Yang G; Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experi
  • Lai Q; Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, PR China; Research Center of 3D Printing in Stomatology of Shandong University, PR China.
  • Zhao Y; Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, PR China; Research Center of 3D Printing in Stomatology of Shandong University, PR China.
J Mech Behav Biomed Mater ; 155: 106553, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38640694
ABSTRACT
Developing a gradient porous scaffold similar to bone structure is gaining increasing attention in bone tissue engineering. The GelMA/HAP hydrogel has demonstrated potential in bone repair. Although 3D printing can build GelMA/HAP with porous structure, fabricating porous GelMA/HAP with gradient porosity and pore size in one step remains challenging. In this paper, a gradient porous structure with controllable pore size, based on gelatin methacryloyl (GelMA) and hydxroxyapatite (HAP), was engineered and printed using stereolithography. Firstly, the GelMA and HAP were mixed to prepare a hydrogel with a solid content ranging from 10 wt% to 50 wt% for stereolithography. Taking advantage of the sol-gel characteristics of GelMA/HAP hydrogel, GelMA/HAP was fed on the workbench through a combination of extrusion and paving to form a thin layer. During the curing of each layer, the hydrogel exposed to the curing of a single UV beam immediately solidified, forming a highly interconnected porous structure. Additionally, the hydrogel outside the scanning range could be further polymerized to form a relatively dense structure due to the residual laser energy. Finally, without gradient structural design or changing printing parameters, the gradient porous structure of bone-like could be printed in a single-step process. By adjusting the curing parameters of the single UV beam and the concentration and size of ceramic in the hydrogel, the printed pore diameter of the spongy structure could be controlled within the range of 50-260 µm, while the thickness of the compact area could be adjusted within 130-670 µm.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Durapatita / Impresión Tridimensional / Gelatina / Metacrilatos Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Durapatita / Impresión Tridimensional / Gelatina / Metacrilatos Idioma: En Revista: J Mech Behav Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article