Your browser doesn't support javascript.
loading
Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra.
Greten, Lara; Salzwedel, Robert; Göde, Tobias; Greten, David; Reich, Stephanie; Hughes, Stephen; Selig, Malte; Knorr, Andreas.
Afiliación
  • Greten L; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
  • Salzwedel R; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
  • Göde T; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
  • Greten D; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
  • Reich S; Experimentelle Festkörperphysik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Hughes S; Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Selig M; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
  • Knorr A; Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
ACS Photonics ; 11(4): 1396-1411, 2024 Apr 17.
Article en En | MEDLINE | ID: mdl-38645994
ABSTRACT
Monolayers of transition metal dichalcogenides (TMDCs) are direct-gap semiconductors with strong light-matter interactions featuring tightly bound excitons, while plasmonic crystals (PCs), consisting of metal nanoparticles that act as meta-atoms, exhibit collective plasmon modes and allow one to tailor electric fields on the nanoscale. Recent experiments show that TMDC-PC hybrids can reach the strong-coupling limit between excitons and plasmons, forming new quasiparticles, so-called plexcitons. To describe this coupling theoretically, we develop a self-consistent Maxwell-Bloch theory for TMDC-PC hybrid structures, which allows us to compute the scattered light in the near- and far-fields explicitly and provide guidance for experimental studies. One of the key findings of the developed theory is the necessity to differentiate between bright and originally momentum-dark excitons. Our calculations reveal a spectral splitting signature of strong coupling of more than 100 meV in gold-MoSe2 structures with 30 nm nanoparticles, manifesting in a hybridization of the plasmon mode with momentum-dark excitons into two effective plexcitonic bands. The semianalytical theory allows us to directly infer the characteristic asymmetric line shape of the hybrid spectra in the strong coupling regime from the energy distribution of the momentum-dark excitons. In addition to the hybridized states, we find a remaining excitonic mode with significantly smaller coupling to the plasmonic near-field, emitting directly into the far-field. Thus, hybrid spectra in the strong coupling regime can contain three emission peaks.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Photonics Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Photonics Año: 2024 Tipo del documento: Article País de afiliación: Alemania