Your browser doesn't support javascript.
loading
Minimization and optimization of α-amylase terminator for heterologous protein production in Bacillus licheniformis.
Rao, Yi; Yang, Jingyao; Wang, Jiaqi; Yang, Xinyuan; Zhang, Mengxi; Zhan, Yangyang; Ma, Xin; Cai, Dongbo; Wang, Zhangqian; Chen, Shouwen.
Afiliación
  • Rao Y; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Yang J; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Wang J; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Yang X; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Zhang M; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Zhan Y; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Ma X; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Cai D; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
  • Wang Z; Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
  • Chen S; State Key Laboratory of Biocatalysis and Enzyme EngineeringEnvironmental Microbial Technology Center of Hubei ProvinceCollege of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China. mel212@126.com.
Bioresour Bioprocess ; 9(1): 108, 2022 Oct 10.
Article en En | MEDLINE | ID: mdl-38647575
ABSTRACT
Terminators serve as the regulatory role in gene transcription termination; however, few researches about terminator optimization have been conducted, which leads to the lack of available and universal terminator for gene expression regulation in Bacillus. To solve this problem and expand synthetic biology toolbox of Bacillus licheniformis, the terminator T1 of endogenous α-amylase gene (amyL) was characterized in this research, with a termination efficiency of 87.81%. Then, we explored and optimized the termination strength of terminator T1 from four aspects the distance between stop codon and terminator, GC content at the bottom of stem structure, loop size, and U-tract length, and the best terminator T24 was attained by combination optimization strategy, which termination efficiency was increased to 97.97%, better than the commonly used terminator T7 (T7P) from Escherichia coli. Finally, terminator T24 was applied to protein expression, which, respectively, led to 33.00%, 25.93%, and 11.78% increases of green fluorescence intensity, red fluorescence intensity, and keratinase activity, indicating its universality in protein expression. Taken together, this research not only expands a plug-and-play synthetic biology toolbox in B. licheniformis but also provides a reference for the artificial design of versatile intrinsic terminator.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioresour Bioprocess Año: 2022 Tipo del documento: Article Pais de publicación: Alemania