Your browser doesn't support javascript.
loading
Baseline unfolded protein response signaling adjusts the timing of the mammalian cell cycle.
Chowdhury, Soham P; Solley, Sabrina C; Polishchuk, Elena; Bacal, Julien; Conrad, Julia E; Gardner, Brooke M; Acosta-Alvear, Diego; Zappa, Francesca.
Afiliación
  • Chowdhury SP; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
  • Solley SC; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
  • Polishchuk E; Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
  • Bacal J; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
  • Conrad JE; Altos Labs Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065.
  • Gardner BM; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
  • Acosta-Alvear D; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
  • Zappa F; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106.
Mol Biol Cell ; 35(6): br12, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38656789
ABSTRACT
The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factor 2 Eucariótico de Iniciación / Ciclo Celular / Proteínas Serina-Treonina Quinasas / EIF-2 Quinasa / Retículo Endoplásmico / Factor de Transcripción Activador 6 / Respuesta de Proteína Desplegada Límite: Animals / Humans Idioma: En Revista: Mol Biol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Factor 2 Eucariótico de Iniciación / Ciclo Celular / Proteínas Serina-Treonina Quinasas / EIF-2 Quinasa / Retículo Endoplásmico / Factor de Transcripción Activador 6 / Respuesta de Proteína Desplegada Límite: Animals / Humans Idioma: En Revista: Mol Biol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article