Your browser doesn't support javascript.
loading
Probabilistic U-Net model observer for the DDC method in CT scan protocol optimization.
Stocker, David; Sommer, Christian; Gueng, Sarah; Stäuble, Jason; Özden, Ismail; Griessinger, Jennifer; Weyland, Mathias S; Lutters, Gerd; Scheidegger, Stephan.
Afiliación
  • Stocker D; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
  • Sommer C; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
  • Gueng S; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
  • Stäuble J; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
  • Özden I; Fachstelle Strahlenschutz und Medizinphysik, Kantonsspital Aarau, 5000 Aarau, Switzerland.
  • Griessinger J; Fachstelle Strahlenschutz und Medizinphysik, Kantonsspital Aarau, 5000 Aarau, Switzerland.
  • Weyland MS; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
  • Lutters G; Fachstelle Strahlenschutz und Medizinphysik, Kantonsspital Aarau, 5000 Aarau, Switzerland.
  • Scheidegger S; ZHAW School of Engineering, 8401 Winterthur, Switzerland.
Phys Med Biol ; 69(11)2024 May 21.
Article en En | MEDLINE | ID: mdl-38657639
ABSTRACT
Optimizing complex imaging procedures within Computed Tomography, considering both dose and image quality, presents significant challenges amidst rapid technological advancements and the adoption of machine learning (ML) methods. A crucial metric in this context is the Difference-Detailed Curve, which relies on human observer studies. However, these studies are labor-intensive and prone to both inter- and intra-observer variability. To tackle these issues, a ML-based model observer utilizing the U-Net architecture and a Bayesian methodology is proposed. In order to train a model observer unaffected by the spatial arrangement of low-contrast objects, the image preprocessing incorporates a Gaussian Process-based noise model. Additionally, gradient-weighted class activation mapping is utilized to gain insights into the model observer's decision-making process. By training on data from a diverse group of observers, well-calibrated probabilistic predictions that quantify observer variability are achieved. Leveraging the principles of Beta regression, the Bayesian methodology is used to derive a model observer performance metric, effectively gauging the model observer's strength in terms of an 'effective number of observers'. Ultimately, this framework enables to predict the DDC distribution by applying thresholds to the inferred probabilities (Part of this work has been presented at Stocker D, Sommer C, Gueng S, Stäuble J, Özden I, Griessinger J, Weyland M S, Lutters G, Scheidegger S (2023). Probabilistic U-Net Model Observer for the DDC Method in CT Scan Protocol Optimization. The 56th SSRMP Annual Meeting 2023, November 30. - December 1., 2023, Luzern, Switzerland).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido