Your browser doesn't support javascript.
loading
Molecular basis of proton-sensing by G protein-coupled receptors.
Howard, Matthew K; Hoppe, Nicholas; Huang, Xi-Ping; Macdonald, Christian B; Mehrota, Eshan; Grimes, Patrick Rockefeller; Zahm, Adam; Trinidad, Donovan D; English, Justin; Coyote-Maestas, Willow; Manglik, Aashish.
Afiliación
  • Howard MK; Tetrad graduate program, University of California, San Francisco, CA, USA.
  • Hoppe N; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
  • Huang XP; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA.
  • Macdonald CB; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
  • Mehrota E; Biophysics graduate program, University of California, San Francisco, CA, USA.
  • Grimes PR; Department of Pharmacology and the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Zahm A; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA.
  • Trinidad DD; Tetrad graduate program, University of California, San Francisco, CA, USA.
  • English J; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
  • Coyote-Maestas W; Medical Scientist Training Program, University of California, San Francisco, CA, USA.
  • Manglik A; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA.
bioRxiv ; 2024 Apr 18.
Article en En | MEDLINE | ID: mdl-38659943
ABSTRACT
Three proton-sensing G protein-coupled receptors (GPCRs), GPR4, GPR65, and GPR68, respond to changes in extracellular pH to regulate diverse physiology and are implicated in a wide range of diseases. A central challenge in determining how protons activate these receptors is identifying the set of residues that bind protons. Here, we determine structures of each receptor to understand the spatial arrangement of putative proton sensing residues in the active state. With a newly developed deep mutational scanning approach, we determined the functional importance of every residue in proton activation for GPR68 by generating ~9,500 mutants and measuring effects on signaling and surface expression. This unbiased screen revealed that, unlike other proton-sensitive cell surface channels and receptors, no single site is critical for proton recognition in GPR68. Instead, a network of titratable residues extend from the extracellular surface to the transmembrane region and converge on canonical class A GPCR activation motifs to activate proton-sensing GPCRs. More broadly, our approach integrating structure and unbiased functional interrogation defines a new framework for understanding the rich complexity of GPCR signaling.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...