Your browser doesn't support javascript.
loading
Calculating Load and Intensity Using Muscle Oxygen Saturation Data.
Vasquez-Bonilla, Aldo; Yáñez-Sepúlveda, Rodrigo; Gómez-Carmona, Carlos D; Olcina, Guillermo; Olivares-Arancibia, Jorge; Rojas-Valverde, Daniel.
Afiliación
  • Vasquez-Bonilla A; Grupo de Avances en Entrenamiento Deportivo y Acondicionamiento Físico, Facultad de Ciencias del Deporte, Universidad de Extremadura, 10003 Caceres, Spain.
  • Yáñez-Sepúlveda R; Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile.
  • Gómez-Carmona CD; Grupo de Optimización del Entrenamiento Deportivo, Facultad de Ciencias del Deporte, Universidad de Extremadura, 10003 Caceres, Spain.
  • Olcina G; Grupo de Avances en Entrenamiento Deportivo y Acondicionamiento Físico, Facultad de Ciencias del Deporte, Universidad de Extremadura, 10003 Caceres, Spain.
  • Olivares-Arancibia J; Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8320000, Chile.
  • Rojas-Valverde D; Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica.
Sports (Basel) ; 12(4)2024 Apr 22.
Article en En | MEDLINE | ID: mdl-38668581
ABSTRACT
The study aimed to calculate training intensity and load using muscle oxygen saturation (SmO2) during two differentiated physical tasks. 29 university athletes participated in a 40-m Maximal Shuttle Run Test (MST, 10 × 40-m with 30 s recovery between sprints) and a 3000-m time trial run. Distance and time were used to calculate external load (EL). Internal load indicators were calculated based on percentage of maximum heart rate (%HRMAX) and SmO2 variables muscle oxygen extraction (∇%SmO2) and the cardio-muscle oxygen index (CMOI) was also provided by relating ∇%SmO2 ÷ %HRMAX, and the training load were calculated as the product of speed (m/min × IL) and the efficiency index [Effindex (m/min ÷ IL)]. A student t test was applied based on Bayesian factor analysis. As expected, EL differed in the 40-m MST (331 ± 22.8) vs. 3000-m trials (222 ± 56.8) [BF10 = 6.25e+6; p = <0.001]. Likewise, IL showed higher values in 40-m MST (39.20 ± 15.44) vs. 3000-m (30.51 ± 8.67) in CMOI [BF10 = 1.70; p = 0.039]. Training load was greater in 40-m MST (85.77 ± 27.40) vs. 3000-m (15.55 ± 6.77) [(m/min × ∇%SmO2) BF10 = 12.5; p = 0.003] and 40-m MST (129.27 ± 49.44) vs. 3000-m (70.63 ± 32.98) [(m/min × CMOI) BF10 = 169.6; p = <0.001]. Also, the Effindex was higher in 40-m MST (10.19 ± 4.17) vs. 3000-m (6.06 ± 2.21) [(m/min × ∇%SmO2) BF10 = 137.03; p = <0.001] and 40-m MST (9.69 ± 4.11) vs. 3000-m (7.55 ± 1.87) [(m/min × CMOI) BF10 = 1.86; p = 0.035]. This study demonstrates calculations of training intensity and load based on SmO2 as an internal load indicator along with speed as an external load indicator during two differentiated exercises.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sports (Basel) Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sports (Basel) Año: 2024 Tipo del documento: Article País de afiliación: España