Your browser doesn't support javascript.
loading
Response signatures of intestinal microbiota and gene transcription of the pearl gentian grouper to Vibrio harveyi infection.
Wang, Fan; Xu, Jia; Wang, Zhiwen; Cao, Junming; Lu, Yishan.
Afiliación
  • Wang F; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China; Guangxi Key Laboratory of Marine Environmental Science
  • Xu J; Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530000, China.
  • Wang Z; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China; College of Fishery, Guangdong Ocean University, Zhanji
  • Cao J; Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. Electronic address: junmcao@163.com.
  • Lu Y; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518210, China; College of Fishery, Guangdong Ocean University, Zhanji
Fish Shellfish Immunol ; 149: 109590, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38677631
ABSTRACT
Vibrio harveyi causes high mortality and severely limits grouper culture. The gut microbiota is an important biological barrier against pathogen invasion. In this study, we investigated dynamic changes in the intestinal microbial community, gene transcription and immune responses signatures of pearl gentian grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀) at 0, 3 and 7 days (referred to as d0, d3 and d7 groups, respectively) after infection with V. harveyi. The results demonstrated that the d7 treatment reduced the gut microbial diversity and increased the proportion of Proteobacteria and Cyanobacteria. Notably, several putative pathogenic genera (Sphingomonas and Bacteroides) proliferated, while putative probiotic genera (Rhodococcus and Lactobacillus) reduced, and these changes in intestinal bacteria might be correlated to the alterations of host immune-related molecules. The d3 and d7 treatments also altered the histomorphology and gene transcription profiles mainly associated with immune function in intestine, such as 'MAPK signaling pathway', 'Apoptosis' and 'Toll-like receptor (TLR) signaling pathway'. Furthermore, d3 group induced a homeostatic dysregulation of the antioxidant system, cytokines and TLR signaling, with a tendency to gradually return to a normal state in d7 group, along with the apoptosis process. The pathogenic infection suppressed the expression of JNK pathway and enhanced the ERK pathway. In conclusion, the dysbiosis of the intestinal bacterial communities caused by the immune changes that occurred during V. harveyi infection disrupted the intestine health in the pearl gentian grouper. These results provided a comprehensive understandings of the immune defense mechanisms in fish and valuable references to develop disease control strategies in grouper aquaculture.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibrio / Vibriosis / Lubina / Enfermedades de los Peces / Microbioma Gastrointestinal Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibrio / Vibriosis / Lubina / Enfermedades de los Peces / Microbioma Gastrointestinal Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido