Your browser doesn't support javascript.
loading
Estimation of Electrostatic Interaction Energies on a Trapped-Ion Quantum Computer.
Ollitrault, Pauline J; Loipersberger, Matthias; Parrish, Robert M; Erhard, Alexander; Maier, Christine; Sommer, Christian; Ulmanis, Juris; Monz, Thomas; Gogolin, Christian; Tautermann, Christofer S; Anselmetti, Gian-Luca R; Degroote, Matthias; Moll, Nikolaj; Santagati, Raffaele; Streif, Michael.
Afiliación
  • Ollitrault PJ; QC Ware Corp., Palo Alto, California 94306, United States.
  • Loipersberger M; QC Ware Corp., Paris 75003, France.
  • Parrish RM; QC Ware Corp., Palo Alto, California 94306, United States.
  • Erhard A; QC Ware Corp., Paris 75003, France.
  • Maier C; QC Ware Corp., Palo Alto, California 94306, United States.
  • Sommer C; QC Ware Corp., Paris 75003, France.
  • Ulmanis J; Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria.
  • Monz T; Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria.
  • Gogolin C; Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria.
  • Tautermann CS; Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria.
  • Anselmetti GR; Alpine Quantum Technologies GmbH, 6020 Innsbruck, Austria.
  • Degroote M; Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria.
  • Moll N; Covestro Deutschland AG, 51373 Leverkusen, Germany.
  • Santagati R; Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.
  • Streif M; Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria.
ACS Cent Sci ; 10(4): 882-889, 2024 Apr 24.
Article en En | MEDLINE | ID: mdl-38680570
ABSTRACT
We present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to N2O catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space. To efficiently measure the necessary one-particle density matrices, we incorporate fermionic basis rotations into the quantum circuit without extending the circuit length, laying the groundwork for further efficient measurement routines using factorizations. Measurements in the computational basis are then used as inputs for computing the electrostatic interaction energies on a classical computer. Our experimental results strongly agree with classical noise-less simulations of the same circuits, finding electrostatic interaction energies within chemical accuracy despite hardware noise. This work shows that algorithms tailored to specific observables of interest, such as interaction energies, may require significantly fewer quantum resources than individual ground state energies would require in the straightforward supermolecular approach.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Cent Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Cent Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos