Your browser doesn't support javascript.
loading
Use of machine learning and Poincaré density grid in the diagnosis of sinus node dysfunction caused by sinoatrial conduction block in dogs.
Flanders, Wyatt Hutson; Moïse, N Sydney; Otani, Niels F.
Afiliación
  • Flanders WH; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
  • Moïse NS; Section of Cardiology, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
  • Otani NF; School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA.
J Vet Intern Med ; 38(3): 1305-1324, 2024.
Article en En | MEDLINE | ID: mdl-38682817
ABSTRACT

BACKGROUND:

Sinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM).

HYPOTHESIS:

Beat-to-beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3-dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism. ANIMALS Three groups of dogs were studied with a diagnosis of (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21).

METHODS:

Heart rate parameters and Poincaré plot data were determined [median (25%-75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM.

RESULTS:

Confusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583-3947 s) from sinus node dysfunction (8503; 7078-10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278-323 ms) vs HP/LSM (260; 251-292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565-698 ms) vs HP/LSM (843; 799-888 ms; P < .0001).

CONCLUSIONS:

Number and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades de los Perros / Aprendizaje Automático / Frecuencia Cardíaca Límite: Animals Idioma: En Revista: J Vet Intern Med Asunto de la revista: MEDICINA INTERNA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades de los Perros / Aprendizaje Automático / Frecuencia Cardíaca Límite: Animals Idioma: En Revista: J Vet Intern Med Asunto de la revista: MEDICINA INTERNA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos