Your browser doesn't support javascript.
loading
eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity.
Shah, Mudassir; Guo, Lei; Xu, Xiangnan; Deng, Lingli; Lu, Keyi; Dong, Jiyang; Zhao, Chao; Xu, Jingjing.
Afiliación
  • Shah M; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
  • Guo L; Interdisciplinary Institute of Medical Engineering, Fuzhou University, Fuzhou 350108, China.
  • Xu X; School of Business and Economics, Humboldt-Universität zu Berlin, Berlin 10099, Germany.
  • Deng L; Department of Information Engineering, East China University of Technology, Nanchang 330013, China.
  • Lu K; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
  • Dong J; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
  • Zhao C; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
  • Xu J; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
J Proteome Res ; 23(8): 3088-3095, 2024 Aug 02.
Article en En | MEDLINE | ID: mdl-38690713
ABSTRACT
Spatial segmentation is an essential processing method for image analysis aiming to identify the characteristic suborgans or microregions from mass spectrometry imaging (MSI) data, which is critical for understanding the spatial heterogeneity of biological information and function and the underlying molecular signatures. Due to the intrinsic characteristics of MSI data including spectral nonlinearity, high-dimensionality, and large data size, the common segmentation methods lack the capability for capturing the accurate microregions associated with biological functions. Here we proposed an ensemble learning-based spatial segmentation strategy, named eLIMS, that combines a randomized unified manifold approximation and projection (r-UMAP) dimensionality reduction module for extracting significant features and an ensemble pixel clustering module for aggregating the clustering maps from r-UMAP. Three MSI datasets are used to evaluate the performance of eLIMS, including mouse fetus, human adenocarcinoma, and mouse brain. Experimental results demonstrate that the proposed method has potential in partitioning the heterogeneous tissues into several subregions associated with anatomical structure, i.e., the suborgans of the brain region in mouse fetus data are identified as dorsal pallium, midbrain, and brainstem. Furthermore, it effectively discovers critical microregions related to physiological and pathological variations offering new insight into metabolic heterogeneity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo Límite: Animals / Humans Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo Límite: Animals / Humans Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China