Your browser doesn't support javascript.
loading
Molecular Stratification and Treatment Monitoring of Lung Cancer Using a Small Extracellular Vesicle-Activated Nanocavity Architecture.
Li, Junrong; Li, Meiqin; Wuethrich, Alain; Guan, Rui; Zhao, Lihui; Hu, Cong; Trau, Matt; Sun, Yao.
Afiliación
  • Li J; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Li M; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Wuethrich A; Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Guan R; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Zhao L; Wuhan Pulmonary Hospital, Wuhan 430079, P. R. China.
  • Hu C; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, P. R. China.
  • Trau M; Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Sun Y; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
Anal Chem ; 96(19): 7651-7660, 2024 05 14.
Article en En | MEDLINE | ID: mdl-38690989
ABSTRACT
Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Vesículas Extracelulares / Oro / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Vesículas Extracelulares / Oro / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos