Your browser doesn't support javascript.
loading
PNA-Functionalized, Silica Nanowires-Filled Glass Microtube for Ultrasensitive and Label-Free Detection of miRNA-21.
Xu, Shiwei; Wang, Guofeng; Feng, Yueyue; Zheng, Juanjuan; Huang, Liying; Liu, Jiahao; Jiang, Yisha; Wang, Yajun; Liu, Nannan.
Afiliación
  • Xu S; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Wang G; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Feng Y; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Zheng J; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Huang L; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Liu J; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Jiang Y; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Wang Y; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
  • Liu N; Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China.
Anal Chem ; 96(19): 7470-7478, 2024 05 14.
Article en En | MEDLINE | ID: mdl-38696229
ABSTRACT
MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dióxido de Silicio / Ácidos Nucleicos de Péptidos / MicroARNs / Nanocables / Vidrio Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dióxido de Silicio / Ácidos Nucleicos de Péptidos / MicroARNs / Nanocables / Vidrio Límite: Humans Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos