Your browser doesn't support javascript.
loading
Machine learning approaches to cryoEM density modification differentially affect biomacromolecule and ligand density quality.
Berkeley, Raymond F; Cook, Brian D; Herzik, Mark A.
Afiliación
  • Berkeley RF; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.
  • Cook BD; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.
  • Herzik MA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.
Front Mol Biosci ; 11: 1404885, 2024.
Article en En | MEDLINE | ID: mdl-38698773
ABSTRACT
The application of machine learning to cryogenic electron microscopy (cryoEM) data analysis has added a valuable set of tools to the cryoEM data processing pipeline. As these tools become more accessible and widely available, the implications of their use should be assessed. We noticed that machine learning map modification tools can have differential effects on cryoEM densities. In this perspective, we evaluate these effects to show that machine learning tools generally improve densities for biomacromolecules while generating unpredictable results for ligands. This unpredictable behavior manifests both in quantitative metrics of map quality and in qualitative investigations of modified maps. The results presented here highlight the power and potential of machine learning tools in cryoEM, while also illustrating some of the risks of their unexamined use.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Mol Biosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Mol Biosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza